301. Comparison of the True and the Apparent Dipole Moments of Dissolved Ethers.

By G. A. Barclay and R. J. W. Le Févre.

New measurements together with data in the literature are used to provide ratios between the true and the apparent dipole moments of dimethyl, diethyl, di- n - and di-iso-propyl, and di- n-butyl ethers. The empirical relationships previously suggested for the " solvent effect " cannot be applied with certainty owing to molecular flexibility and consequent doubt concerning the molecular shapes. The types of configuration which could lead to the $\mu_{8}{ }^{2} / \mu_{g}{ }^{2}$ values found by experiment are indicated.

In this paper we consider the applicability, to five simple aliphatic ethers, of the empirical equations advanced previously (cf. $J ., 1950,3370$) to relate an apparent dipole moment of a dissolved substance to the true value as determined on the vapour. The present examples were originally selected because the first three members are known to possess Kerr constants which are algebraically negative (Stuart and Volkmann, Ann. Physik, 1933, 18, 121) :

$$
10^{-15} K \text { for } \lambda=5400 \AA \text { and press. }=760 \mathrm{~mm} .
$$

We have also added the cases of diisopropyl and di- n-butyl ethers, the Kerr effects for which have not yet been recorded, although for the former at any rate a markedly negative K may be presumed by analogy with diisopropyl ketone ($K=-\mathbf{1 5 \cdot 3} \times 10^{-15}$; Stuart and Volkmann, loc. cit.) ; this aspect is, however, less important now in view of results recently obtained here (cf. J., 1950, 283, 290, 556, 3370).

Since the comparisons sought are those of the orientation polarisations as solutes to those as vapours, it is necessary to ascertain the total polarisations in the two states at one temperature as well as the Debye equations for each ether. Much of this information can be drawn from the literature.

Data providing Polarisations.-We list first (Table 1) a selection of measurements on ethers as gaseous dielectrics, with references in chronological order. Certain earlier and obviously approximate figures are omitted, e.g., those calculated by Højendahl (Thesis, Copenhagen, 1928) from the work of Pohrt (Ann. Physik, 1913, 42, 569). Where an author or combination of authors has made at various times redeterminations on the same substance, only the latest results are quoted, previous papers being noted in parentheses.

For each ether we have investigated the degree of concordance between the various authors by plotting their polarisation values against l / T. In the cases where only $(\varepsilon-1)_{T}$ is given, the appropriate $(P)_{\mathrm{T}}$ has been calculated. The Figure indicates that the agreement is better than might be expected from the Debye equations in Table 1.

By least.squares, and from the data used in the Figure, we obtain the relations listed in Table 2. We suggest that this Table summarises the variation of P with T satisfactorily since inspection reveals that for the four homolgous n-alkyl ethers there are differences.

1644 Barclay and Le Fèvre: Comparison of the True and the
Table 1. Ethers as gases.

Results given as Dimethyl ether
$(\varepsilon-1)_{\mathrm{T}}$ values
$\boldsymbol{P}=15 \cdot 4+10$............
$P=15 \cdot 03+10,130 / T \ldots$ Total Pn.* at each temp.

Diethyl ether
$(\varepsilon-1)_{\mathrm{T}}$ values \qquad
No. of temps.

References

$P=" 2.76 \ddot{+} 7490 / \dddot{T} \ldots \ldots$.
4 Stuart, loc. cit.
3 Fuchs, Z. Physik, 1930, 63, 824.
$P=23 \cdot 2+8620 / T \ldots \ldots$
Final μ onl
3 Stuart, Z. Physik, 1928, 51, 490.
4 Sänger, Steiger, and Gächter, Helv. Phys. Acta, 1932, 5, 20 1929, 2, 130 ; 1930, 3, 162).
2 Ramaswamy, Proc. Indian Acad. Sci., 1936, A, 4, 108.
3 Grọves and Sugden, J., 1937, 1779.

Total Pn.* at each temp.
Sänger, Steiger, and Gächter, loc. cit. (cf. also Physikal. Z., 1927, 28, 455 ; 1930, 31, 306). Groves and Sugden, loc. cit.

Di-n-propyl ether
$P=41 \cdot 3+6350 / T \ldots . . \quad 3$ Sänger, Steiger, and Gächter, loc. cit.
Total Pn.* at each temp. 3 Groves and Sugden, loc. cit.
Diisopropyl ether
$P=38 \cdot 5+7717 \cdot 8 / T \ldots \quad 6$ Present work.
Di-n-butyl ether
Total Pn.* at each temp. 3 Groves and Sugden, loc. cit.

* $\mathrm{Pn} .=$ polarisation.
of $9 \cdot 2_{5}, 10 \cdot 2_{5}$, and 8.6 c.c. between the successive distortion polarisations-amounts which compare reasonably with the refractivity increases ($9 \cdot 17$ and $9 \cdot 21$ c.c., for the d line) from $\mathrm{Et}_{2} \mathrm{O}$ to $\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$ to $\mathrm{Bu}^{\mathrm{n}}{ }_{2} \mathrm{O}$ (Vogel, $J ., 1948,616$).

Table 3 presents measurements on the ethers when dissolved in benzene. The total polarisations are those shown by the authors cited, except in the cases of the Chinese paper (where we have deduced 71.7 c.c. from the dielectric constants and density figures given)

Table 2.

Table 3. Ethers as solutes in benzene.

and each of the results of Spurr and Zeitlin (where we have computed the polarisations from the μ and R quoted). Since with our own measurements we extrapolate the $\left(\varepsilon_{12}-\varepsilon_{2}\right) / w_{1}$ and $\left(d_{12}-d_{2}\right) / w_{1}$ values at each w_{1} to $w_{1}=0$, we have re-examined the data of Thomson and of Spurr and Zeitlin in the same manner. For the former, with diisopropyl ether both $\left(\varepsilon_{12}-\varepsilon_{2}\right) / f_{1}$ and ($\left.d_{12}-d_{2}\right) / f_{1}$ seem to be invariant with f_{1}, while with di- n-butyl ether this is true only of the density. Thus we find :

f_{1} range	Diisopropyl ether 0 to $0 \cdot 177$	Di- n-butyl ether 0 to 0.06
$\left(a \epsilon_{2}\right)_{f 1}$	2.00	$1.051+2 \cdot 2 f_{1}$
$\left(\beta d_{2}\right)_{f_{1}}$	-0.0273	-0.2551

After adjustment to the basis where $\varepsilon_{C_{6} \mathrm{H}_{6}}^{25}=2.2725$ and $d_{\mathrm{C}_{6} \mathrm{H}_{4}}^{22}=0.87378$, the coefficients at $f_{1}=0$ give-via Hedestrand's equation (Z. physikal. Chem., 1929, B, 2, 428)-total polarisations of 70.6 and 67.6 c.c. respectively for the dipropyl and the dibutyl ether. These results are somewhat lower than those listed by Thomson. Similar treatment of the f_{1}, ε, and d figures tabulated by Spurr and Zeitlin leads to abnormally high estimates of ${ }_{\infty} P_{1}$ (e.g., above 75 c.c. for diethyl ether). In Table 3 the polarisations quoted by the American authors for the three ethers concerned are inserted in parentheses.

Table 4 is included to show that the polarisations observed as dilute solutions in benzene, or as pure liquids, resemble one another closely. From the molecular volumes, V, and the distortion polarisations, ${ }_{\mathrm{D}} P$ (Table 2), $\left(n_{\mathrm{EIf}}^{22}\right)^{2}$ is obtained via $\left(n_{\mathrm{EIf}}^{28}\right)^{2}=$ $\left(V+2{ }_{\mathrm{D}} P\right) /\left(V-{ }_{\mathrm{D}} P\right)$; for comparison the corresponding $\left(n_{\mathrm{D}}^{25}\right)^{2}$ figures are also given (Table 4).

Table 4. Ethers as liquids.

	ε^{25}	d_{4}^{25}	${ }_{\mathrm{T}} P_{\text {Liq. }}$ (c.c.)	$\left(n_{\text {Eff }}\right)^{2}$	$\left(n_{\mathrm{D}}^{25}\right)^{2}$
$\mathrm{Et}_{2} \mathrm{O}$	$4 \cdot 26{ }_{5}{ }^{1}$	0.708	54.5	2.218	2.086
$\mathrm{Pr}_{2} \mathrm{O}$	$3 \cdot 39{ }^{2}$	$0 \cdot 744$	60.9	2.014	1.900
$\mathrm{Pr}^{1}{ }_{2} \mathrm{O}$	$4 \cdot 04^{3}$	0.720	71.4	$2 \cdot 117$	1.863
$\mathrm{Bu}_{2} \mathrm{O}$	$3.08{ }^{3}$	0.766	$69 \cdot 6$	2.025	1.950

Table 5.

	$\mathrm{Me}_{2} \mathrm{O}$	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{Pr}_{2} \mathrm{O}$	$\mathrm{Pr}_{2} \mathrm{O}$	$\mathrm{Bu}_{2} \mathrm{O}$
$\left(\mathrm{T}^{\mathrm{P}}\right)_{\text {gas }}$	$49 \cdot 0$	52.45	$63 \cdot 2$	$64 \cdot 4$	71.2
${ }_{0} P$	$15 \cdot 2$	24.45	$34 \cdot 7$	38.5	$43 \cdot 3$
$(\mathrm{o} P)_{\text {gas }}$	$33 \cdot 8$	$28.0{ }^{\circ}$	28.5	25.9	27.9
$\left({ }_{T} P_{\infty}\right)_{\mathrm{c}_{6} \mathrm{H}_{4}}$	$47 \cdot 3$	56.95	$60 \cdot 8$	$70 \cdot 9$	$67 \cdot 6$
$\left({ }_{0} P_{\infty}^{\infty}\right)_{\mathrm{C}_{6} \mathrm{H}_{6}}$	$32 \cdot 1$	32.5	26.1	$32 \cdot 4$	$24 \cdot 3$
$\mu_{\mathrm{g}} \ldots \ldots .$.	$1 \cdot 29$	$1 \cdot 17$	$1 \cdot 18$	$1 \cdot 13$	$1 \cdot 17$
	$1 \cdot 25$	1.26	$1 \cdot 13$	$1 \cdot 26$	1.09
${ }_{0} P_{8} / \mathrm{O} P_{\mathrm{g}}$	0.950	$1 \cdot 16$	0.916	$1 \cdot 25$	0.871

Discussion.-In Table 5 we assemble our results under the headings used before (Barclay and Le Fèvre, $J ., 1950,556$; Angyal, Barclay, and Le Fèvre, J., 1950, 3370).

The ratios forming the bottom line of Table 5 are now to be compared with figures calculated by equations $(a),(b)$, and (c) :

$$
\begin{align*}
& { }_{\mathrm{o}} P_{\mathrm{s}} / \mathrm{o} P_{\mathrm{g}}=1+k\left[\exp x^{2}-\left(n_{\mathrm{Eff}}^{2}\right)_{2} /\left(n_{\mathrm{Eff}}^{2}\right)^{2}\right] \tag{a}\\
& { }_{\mathrm{o}} P_{\mathrm{s}} / \mathrm{o} P_{\mathrm{g}}=1+k\left[\exp x^{2}-\exp \left(h_{2}^{2}-h_{1}^{2}\right)\right] \tag{b}\\
& { }_{\mathrm{o}} P_{\mathrm{s}} / \mathrm{o} P_{\mathrm{g}}=1+k\left[\exp x^{2}-\exp \left(R_{1} / R_{2}\right)\left(1-A_{1} B_{1} \dot{C}_{1} / \dot{A}_{2} B_{2} C_{2}\right)\right] \tag{c}
\end{align*}
$$

In these, subscripts 1 or 2 indicate solute or solvent respectively. For benzene at 25°, $n_{\text {Eff }}^{2}$ is $2 \cdot 300$ (from measurements of ${ }_{\mathrm{T}} P_{\text {gas }}$ by McAlpine and Smyth, J. Amer. Chem. Soc., 1933, 55, 453, and Ramaswamy, Proc. Indian Acad. Sci., 1936, A, 4, 108), $\left(n_{2}{ }^{2}\right)_{\mathrm{D}}$ is $2 \cdot 2417$, the volume polarisation (k) is 0.2978 c.c., $\left[R_{2}\right]_{\mathrm{D}}$ is 26.15 c.c., and $A_{2} B_{2} C_{2}$ is 117.6 ; requisite $[R]_{\mathrm{D}}$ data for the ethers are taken from Vogel ($J ., 1948,616$); Table 4 gives the relevant figures for $\left(n_{\mathrm{Eff}}^{2}\right)_{1}$ and $\left(n_{1}{ }^{2}\right)_{\mathrm{D}} ; x^{2}$ and $h_{1}{ }^{2}$ or $h_{2}{ }^{2}$ are computed from diagrams incorporating "Wirkungsradien" as described in the papers cited at the head of this section ($h_{2}{ }^{2}$ for benzene is 0.101).

As a basis for the construction of these scale drawings we have used the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ interatomic distances and $\mathrm{C}-\mathrm{O}-\mathrm{C}$ angles listed by Allen and Sutton (loc. cit.) for dimethyl and diethyl ether. Only in the former case can the molecular shape be foreseen with certainty. For the higher homologues we initially tried an extended zig-zag arrangement (e.g., as I and II), since X-ray analyses of long-chain solid aliphatic substances (cf., e.g., Hendricks, Chem. Reviews, 1930, 7, 431) suggested this as a reasonable first guess. However, Table 6 shows it to be unsatisfactory. Estimates, based on models of types such as (III), (IV), or (V), are therefore included for comparison. Good agreement with experiment

(I)

(IV)

(II)

(III)

(VI)
is obtained if diethyl ether is given a "trans"-disposition of the two methyls about the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ plane (indicated on edge by VI). For diisopropyl ether we have taken the $\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{H}$ arrangement as flat, with the hydrogen atoms close together (ca. $1.7 \AA$ between centres).

However, while drawings indicate that these and other modifications are sterically allowable, we recognise the probability that, because of the flexibility of the alkyl radicals, the correct effective molecular shapes are some unknown average of all the possibilities. Such a suggestion is compatible with the information in Table 6, in which the various " calculated " ratios are compared with those " found."

We have pointed out in our previous papers that the usefulness of relation (a) for a priori computations of μ_{gas} is increased if accessible quantities such as $n_{\mathrm{D}}{ }^{2}$ may be employed in place of n_{EI}^{2} (the evaluation of which implies preknowledge of polarisation-temperature measurements, from which $\mu_{\text {gas }}$ is directly available, for the gaseous substance). Accordingly we now list (Table 7) the "gas" dipole moments obtained via equation (a) from determinations with benzene as solvent, using $n_{\mathrm{D}}{ }^{2}$ figures from Table 4. It is seen that for each of four of the ethers a configuration (used last where more than one is considered) exists permitting an estimate of $\mu_{\text {gas }}$ within $\pm 3 \%$ of the correct value. With the diethyl, di- n-propyl, and di- n-butyl members, the ratios ($\left.n_{\mathrm{EIf}}^{2}\right) /\left(n_{\mathrm{D}}{ }^{2}\right)$ are all between

Table 6.

			-			$\begin{gathered} { }_{\mathrm{o}} P_{8} / \mathrm{o} P_{\mathrm{g}} \text { calc. } . \\ \text { via eqns. } \end{gathered}$		$\begin{aligned} & { }_{\mathrm{o}} P_{\mathrm{s}} / \mathrm{o}_{\mathrm{g}} \mathrm{~g}_{\mathrm{g}} \\ & \text { (} \end{aligned}$
	A_{1}	B_{1}	C_{1}	R_{1}	(a)	(b)	(c)	
$\mathrm{Me}_{2} \mathrm{O}$	$4 \cdot 05$	6.35	4.00	13.07*		0.98	0.98	0.95
$\mathrm{Et}_{2} \mathrm{O}$ (zig-zag)	$4 \cdot 42$	8.80	$4 \cdot 00$	22.51	0.98	1.00	1.06	$1 \cdot 16$
," (as VI)	$4 \cdot 36$	7.20	6.90		$1 \cdot 18$	1.20	1.41	
$\mathrm{Pr}_{2} \mathrm{O}$ (zig-zag)	$4 \cdot 42$	11.25	$4 \cdot 00$	31.68	0.95	1.03	$1 \cdot 16$	0.92
, (as III)	$5 \cdot 95$	7.90	$4 \cdot 00$		$0 \cdot 88$	0.91	1.07	
$\mathrm{Pri}_{2} \mathrm{O}$..........	$4 \cdot 30$	$7 \cdot 84$	$6 \cdot 45$	$31 \cdot 71$	$1 \cdot 11$	$1 \cdot 12$	$1 \cdot 33$	1.25
$\mathrm{Bu}_{2} \mathrm{O}$ (zig-zag)	$4 \cdot 42$	13.85	$4 \cdot 00$	$40 \cdot 89$	0.95	1.06	1.24	0.87
,, (as IV)	$6 \cdot 81$	10.37	$4 \cdot 00$,,	0.94	1.00	1.25	,"
,, (as V)	8.72	10.50	$4 \cdot 00$		0.83	0.95	$1 \cdot 16$	

40, 27) on gaseous dimethyl ether lead to $R_{5461}=13.00$ c.c.
Table 7.

Ether	$\mathrm{Me}_{2} \mathrm{O}$	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{Pr}_{2} \mathrm{O}$	$\mathrm{Pr}_{2} \mathrm{O}^{\mathrm{O}}$	$\mathrm{Bun}_{2} \mathrm{O}$
$\mu_{\mathrm{C}_{\mathrm{G}} \mathrm{H}_{\mathrm{G}}}$	$1 \cdot 25$	$1 \cdot 26$	$1 \cdot 13$	1.26	$1 \cdot 09$
($\mu_{\text {gas }}$), calc.	1.26*	1.28, 1.15	1-17, 1-21	1.23	1-12, 1-12, 1-20
(μ_{gas}), found	1.29	$1 \cdot 17$	$1 \cdot 18$	$1 \cdot 13$	$1 \cdot 17$
Error (\%)	-2.3	$+9 \cdot 4,-1 \cdot 7$	$-0.85,+2.5$	$+8 \cdot 8$	$-4 \cdot 3,-4 \cdot 3,+2 \cdot 6$

* Equation (b) used, since n_{D}^{2} not available at 25°. The configurations used for calculation of μ_{gms} are those listed in order downwards in Table 6.
1.04 and 1.06 (cf. Table 4); for diisopropyl ether, however, the ratio is 1.14 . If, in this instance, the " effective" refractive indexes are used, $\mu_{\text {gas }}$ is calculable as $1 \cdot 19_{5} \mathrm{D}$, and the error as $5 \cdot 3-6.2 \%$.

Experimental

Materials, Apparatus, and Methods.-Dimethyl and di- n-propyl ethers were prepared from the corresponding alcohols, the former being scrubbed with potassium hydroxide solution and finally dried by passage through a potassium hydroxide tower. Other ethers were purchased. The liquid members were treated with sodium and fractionated immediately before use. The benzene was the frozen-out portion from " AnalaR" grade thiophen-free stock. It was stored over sodium wire. The dielectric constants of solutions have been determined with the apparatus noted previously (J., 1948, 1949 ; 1949, 333) ; necessary data are tabulated below under the usual headings (cf. Trans. Faraday Soc., 1950, 46, 1, for definitions and explanation of extrapolation procedure adopted). For the measurements on gaseous diisopropyl ether we have used the circuit shown as Fig. 3 in J., 1950, 276, together with the cell assembly illustrated in J., 1950, 290. The third column of Table 8 reports polarisations computed relatively to carbon dioxide, whose polarisation is taken as invariant with temperature and equal to 7.341 c.c. (cf. Trans. Faraday Soc., 1947, 43, 374), by the expression :

$$
P_{\text {sther }}=7.341(\delta C / p)_{p=0}^{\mathrm{Ether}} /(\delta C / p)_{p=0}^{\mathrm{CO}_{2}}
$$

The appropriate standardising equation was :

$$
(\delta C / p)_{p=0}^{\mathrm{co}_{2}}=2307.4 / T-0.054
$$

Table 8. Diisopropyl ether as a vapour.

T (A)	$(\delta C / p)_{p} \rightarrow 0$	P (c.c.)	P (calc.)	$\underset{(\mathrm{cm} .)}{p \text { range }}$	No. of observations
$354{ }^{\circ}$	53.3	60.5	$60 \cdot 3$	26-66	15
373	$49 \cdot 2$	$58 \cdot 9$	$59 \cdot 2$	14-54	12
384	$47 \cdot 2$	$58 \cdot 2$	$58 \cdot 6$	14-63	16
390	$46 \cdot 9$	$58 \cdot 7$	58.3	15-61	12
405	$44 \cdot 3$	$57 \cdot 6$	$57 \cdot 6$	13-54	14
432	$40 \cdot 6$	56.4	56.4	25-66	11

Table 9. Solutions in benzene at 25°.

$w_{1} \times 10^{5}$	$\begin{gathered} \varepsilon_{12} \\ 2 \cdot 2725 \end{gathered}$	$\underline{a \varepsilon_{2}}$	$\begin{gathered} d_{12} \\ 0.87378 \end{gathered}$	βd_{2}	$\begin{gathered} w_{1} \times 10^{5} \\ 0 \end{gathered}$	$\begin{gathered} \varepsilon_{12} \\ 2: 2725 \end{gathered}$	${ }^{\boldsymbol{\alpha} \epsilon_{2}}$	$\begin{gathered} d_{12} \\ 0.87378 \end{gathered}$	βd_{2}
Dimethyl ether *					Di-n-propyl ether				
1112	$2 \cdot 3084$	$3 \cdot 23$	0.87132	-0.221	$715 \cdot 2$	$2 \cdot 2804$	$1 \cdot 10$	0.87266	-0.157
2056	$2 \cdot 3387$	$3 \cdot 23$	0.86921	-0.222	719.8	$2 \cdot 2803$	1.08	0.87267	-0.154
2234	$2 \cdot 3477$	3:37	0.86895	-0.216	1152	$2 \cdot 2844$	1.03	0.87198	-0.156
2765	$2 \cdot 3675$	3-44	0.86741	-0.230	1233	$2 \cdot 2862$	1.11	0.87196	-0.148
4628	$2 \cdot 4364$	3.54	0.86314	-0.230	1581	$2 \cdot 2889$	1.04	0.87145	-0.147
5292	$2 \cdot 4543$	$3 \cdot 44$	0.86373	-0.190	2123	$2 \cdot 2952$	1.06	0.87063	-0.148
Whence $\left(a \varepsilon_{2}\right) w_{1}=3 \cdot 19+6 \cdot 28 w_{1}$; mean $\beta d_{2}=-0.218$.					2961	$2 \cdot 3043$ 2.3085	1.07 1.13	0.86944 0.86893	-0.147
					Whence mean $a \varepsilon_{2}=1.08$; mean $\beta d_{2}=-0.151$.				

	Diethyl ether*				Diisopropyl ether				
11617	2.2940	1.85	0.87159	-0.188	1364	2.2937	1.55	0.87168	-0.154
16806	$2 \cdot 3047$	1.98	0.87057	-0.191	3395	$2 \cdot 3254$	1.56	0.86809	-0.167_{5}
21118	$2 \cdot 3145$	1.99	0.86983	-0.187	4963	$2 \cdot 3499$	1.56	0.86544	-0.168
27317	$2 \cdot 3232$	1.86	0.86881	-0.182	8554	$2 \cdot 4055$	$1.55{ }_{5}$	0.85995	-0.162
30123	$2 \cdot 3299$	1.82	0.86821	-0.185	12668	$2 \cdot 4714$	1.57	0.85388	-0.157
32607	$2 \cdot 3315$	1.81	0.86772	-0.186	15800	$2 \cdot 5237$	1.59	0.84789	-0.164
34537	$2 \cdot 3383$	1.90	0.86720	-0.190	20077	2.5957	1.61	0.84188	-0.159
35980	$2 \cdot 3413$	1.91	. 0.86709	-0.186	Whence $\left(a \varepsilon_{2}\right) w_{1}=1.54+0.28 w_{1} ;$$\Sigma\left(d_{12}-d_{2}\right) / \Sigma w_{1}=-0.161$.$\Sigma\left(d_{12}-d_{2}\right) / \Sigma w_{1}=-0 \cdot 161 .$				
37168	$2 \cdot 3446$	1.94	0.86703	-0.182					
40100	$2 \cdot 3470$	1.86	0.86628	-0.187					
44178	$2 \cdot 3547$	1.86	0.86565	-0.184	* The concns. in this case are $w_{1} \times 10^{6}$.				
56849	$2 \cdot 3781$	1.86	0.86370	-0.177					
128050	2.5135	1.88	0.85010	-0.183					
Whence mean $\alpha \varepsilon_{2}=1.88$; mean $\beta d_{2}=-0.185$.									

The accuracies of the measurements on solutions may be gauged by applying the rule that the greatest probable error is $3 \Sigma r / n \sqrt{n}$, where n is the number of observations made, and Σr is the sum of the differences (irrespective of sign) between the values of $\alpha \varepsilon_{2}$ and βd_{2} from experiment and those obtained by averaging (or, where appropriate, by calculation). The polarisation at infinite dilution in benzene at 25° being given by $M_{1} p_{2}(1-\beta)+M_{1} C \alpha \varepsilon_{2}$, the variations in ($1-\beta$) and $\alpha \varepsilon_{2}$, and hence the maximum error in ($\left.{ }_{T} P_{\infty}\right)_{\mathrm{C}_{4} \mathrm{H}_{0}}$, may be set out as follows :

($1-\beta$)	$\begin{aligned} & \mathrm{Me}_{2} \mathrm{O} \\ & \pm 0.014 \end{aligned}$	$\begin{gathered} \mathrm{Et}_{2} \mathrm{O} \\ \pm 0.003 \end{gathered}$	$\begin{gathered} \mathrm{Pr}_{2} \mathrm{O} \\ \pm 0.004 \end{gathered}$	$\begin{gathered} \mathrm{Pr}_{2}^{\mathrm{l}_{2}} \\ \pm 0.006 \end{gathered}$
$a \varepsilon_{2}$..	± 0.08	± 0.04	$\pm \mathbf{0 . 0 3}$	± 0.01
	0.9	0.6	0.7	$0 \cdot 4$

Reference to Table 5 will show these as $c a .2,1,1$, and 0.5% of the polarisations respectively. The higher uncertainty for dimethyl ether may be due to the difficulties of handling a gaseous solute.

Financial assistance from the Commonwealth Science Grant is gratefully acknowledged, as is also the help given by Messrs. A. D. Buckingham and B. Harris with the measurements on diethyl ether solutions.

